Le Chatelier's Princ	ciple Worksheet #2
 In the following reaction, will the [H2] when equilibrium is reestablished af are applied? 	l increase or decrease ter these stresses
$N_2(g) + 3 H_2(g)$	g) ↔ 2 NH₃(g) + 22 kJ
NH ₃ (g) is added shift L, H2 inc	cr. N ₂ (g) is removed shift L, H2 incr.
pressure is increased shiftR, H	2 decrTemperature is increased <u>shift L,</u> H2 incr.
2) In which direction, left or right, will the changes are made? 2 NO (g) + H ₂ (g)	e equilibrium shift if the following $\leftrightarrow N_2 O_1(a) + H_2 O_1(a) + 36 k I$
	- P
NO is addedR	The system is cooled
H ₂ is removed	Pressure is increased
N ₂ O is added	H ₂ is removed
3) In this reaction: $CO_2(g) + H_2(g) + heat$	$t \leftrightarrow CO(g) + H_2O(g)$
Is heat absorbed or released by t	he forward reaction? <u>Absorbed</u>
In which direction will the equilibri	ium shift if these changes are made?
CO is added	Temperature is increased
CO2 is added R	System is cooled
H ₂ is removed	Pressure is increased <u>no change! same # mol</u>
Catalyst is added <u>no change!</u>	gas on each side of rxn
 4) In this reaction: 2 NO (g) + H₂(g) ↔ N What will happen to the [H₂O] when e stresses are applied? Temperature is increased <u>Shift</u> A catalyst is added <u>no change!</u> Pressure is decreased <u>Shift L, H</u> NO is added <u>Shift R, H2O increased</u> 	¹ ² O (g) + H ₂ O (g) + heat quilibrium is reestablished after these L, H2O decr. 12O decr.
N ₂ O is removed <u>Shift R, H2O ir</u>	ncr.

••••••

5) How would an increase in pressure affect the [H₂] in the following reactions?

2 H₂(g) + O₂(g) \leftrightarrow 2 H₂O (g) <u>Shift R, H2 decr.</u>

4 H₂(g) + Fe₃O₄(s) \leftrightarrow 3 Fe (s) + 4 H₂O (I) Shift R, H2 decr.

 $H_2(g) + Cl_2(g) \leftrightarrow 2 \text{ HCl } (g)$ <u>no change, same # mol gas on each side</u>

6) State Le Chatelier's Principle in your own words.

When a reaction is stressed and the rate forward and backwards are not equal, the reaction will shift where the equilibrium is to undo that stress so the rate forward and backward can be equal again.

so the rate forward and backward can be equal again.7) The reaction of iron(III) oxide with carbon monoxide occurs in a blast furnace when iron ore it reduced to iron metal:

Fe₂O₃ (s) + 3 CO (g) \leftrightarrow 2 Fe (l) + 3 CO₂ (g)

Use Le Chatelier's Principle to predict the direction of reaction when an equilibrium mixture is disturbed by :

Adding CO (g) Forward (to R) Removing CO₂ (g) Forward (to R)

Adding Fe₂O₃ (s) <u>No change</u>

8) For the reaction, $PCI_{5}(g) \leftrightarrow PCI_{3}(g) + CI_{2}(g) \quad \Delta H_{rxn} = +111 \text{ kJ}.$ Fill in the following table.

Change	Shifts Reaction Which Way?	
add PCIs	R to use it up	
remove Cl ₂	R to make more	
add Ar	no change, noble gas	
decrease V (or increase P)	L, fewer gas moles	
increase T	R, use up energy b/c it is endothermic,	
add catalyst	no change, just gets to	energy is a reactant
	equilibrium faster but doesn change where equilibrium is	't

9) For the reaction: $2HI(g) \leftrightarrow H2(g) + I2(g) \Delta Hrxn = -51.8kJ$

Fill in the following table:

Change	Shifts Reaction Which Way?
add H ₂	L
remove HI	L
add Ne	No change no change
increase V (decrease P)	same # moles gas
decrease T	R b/c exothermic so
	energy is a product