Le Chatelier's Principle Worksheet \#2

1) In the following reaction, will the $\left[\mathrm{H}_{2}\right]$ increase or decrease when equilibrium is reestablished after these stresses are applied?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+22 \mathrm{~kJ}
$$

$\mathrm{NH}_{3}(\mathrm{~g})$ is added shift $\mathrm{L}, \mathrm{H} 2$ incr. $\quad \mathrm{N}_{2}(\mathrm{~g})$ is removed

shift L, H2 incr. pressure is increased shift, H 2 decrTemperature is increased $\underset{\text { shift } \mathrm{L}, \mathrm{H} 2}{\text { incr. }}$ incr.
2) In which direction, left or right, will the equilibrium shift if the following changes are made?

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+36 \mathrm{~kJ}
$$

NO is added \qquad H_{2} is removed $\quad \mathrm{L}$ $\mathrm{N}_{2} \mathrm{O}$ is added $\quad \mathrm{L}$
The system is cooled R

Pressure is increased R
H_{2} is removed \qquad
:3) In this reaction: $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+$ heat $\leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Is heat absorbed or released by the forward reaction? \qquad
Absorbed
In which direction will the equilibrium shift if these changes are made?
CO is added $\quad \mathrm{L}$

Temperature is increased
R
\qquad
H_{2} is removed L

System is cooled \qquad
Pressure is increased _no change! same \# mol gas on each side of run

Catalyst is added no change!
:4) In this reaction: $2 \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat
What will happen to the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ when equilibrium is reestablished after these stresses are applied?

Temperature is increased Shift L, H2O dear.

A catalyst is added no change!
Pressure is decreased Shift L, H2O decr.
NO is added Shift R, H2O incr.
$\mathrm{N}_{2} \mathrm{O}$ is removed Shift R, H 2 O incr.
5) How would an increase in pressure affect the $\left[\mathrm{H}_{2}\right]$ in the following reactions?

$$
\begin{aligned}
& 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \text { Shift R, H2 decr. } \\
& 4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \leftrightarrow 3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) _ \text {Shift R, H2 decr.. } \\
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HCl}(\mathrm{~g}) \quad \text { no change, same \# mol gas on each side }
\end{aligned}
$$

6) State Le Chatelier's Principle in your own words.

When a reaction is stressed and the rate forward and backwards are not equal, the reaction will shift where the equilibrium is to undo that stress so the rate forward and backward can be equal again.
7) The reaction of iron(III) oxide with carbon monoxide occurs in a blast furnace when iron ore it reduced to iron metal:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \leftrightarrow 2 \mathrm{Fe}(\mathrm{I})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

Use Le Chatelier's Principle to predict the direction of reaction when an equilibrium mixture is disturbed by :

Adding $\mathrm{CO}(\mathrm{g})$ _ Forward (to R) Removing $\mathrm{CO}_{2}(\mathrm{~g})$ Forward (to R)
Adding $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad$ No change
8) For the reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{Hrxn}_{\mathrm{rx}}=+111 \mathrm{~kJ}$.

Fill in the following table.

Change	Shifts Reaction Which Way?
add PCl_{5}	R to use it up
remove Cl_{2}	R to make more
add Ar	no change, noble gas
decrease V (or increase P)	L, fewer gas moles
increase T	R, use up energy b/c it is endothermic,
add catalyst	no change, just gets to equilibrium faster but doesn't
	equange where equilibrium is

9) For the reaction: $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~g}) \Delta \mathrm{Hr} \times n=-51.8 \mathrm{~kJ}$

Fill in the following table:

Change	Shifts Reaction Which Way?
add H_{2}	L
remove HI	L
add Ne	No change no change,
increase V (decrease P)	same \# moles gas
decrease T	R b/c exothermic so

